
Exploring Automated Software Composition
with Genetic Programming

Erik M. Fredericks and Betty H. C. Cheng
Michigan State University

East Lansing, Michigan 48824-1226, USA
{freder99, chengb}@cse.msu.edu

ABSTRACT
Much research has been performed in investigating the nu-
merous dimensions of software composition. Challenges in-
clude creating a composition-based design process, design-
ing software for reuse, investigating various strategies for
composition, and automating the composition process. De-
pending on the complexity of the relevant components, nu-
merous composition strategies may exist, each of which may
have several options and variations for aggregate steps in
realizing these strategies. This paper presents an evolution-
ary computation-based framework for automatically search-
ing for and realizing an optimal composition strategy for
composing a given target module into an existing software
system.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming;
D.2.13 [Software Engineering]: Reusable Software

General Terms
Algorithms

Keywords
Search-based Software Engineering, Genetic Programming,
Software Composition

1. INTRODUCTION
Incorporating new capabilities into legacy software sys-

tems can be a non-trivial task. Environmental constraints
and new/updated requirements must be considered when in-
troducing modules to update system functionality. Software
composition is an approach for building and maintaining
large software systems by integrating existing software mod-
ules. Given the numerous factors that must be considered
when composing target modules into an existing software
system (i.e. source module), automating some or all of this
process is an attractive option. This paper overviews an
approach that harnesses evolutionary computation to auto-
mate the composition process.

Software composition is an approach for creating a soft-
ware system by incorporating existing objects or modules

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

to form a larger composite system [6]. Research into auto-
mated software composition has yielded promising results by
applying superimposition [1], a process that merges the sub-
structures within software modules. Nevertheless, as soft-
ware systems grow in complexity it can become necessary
for search-based heuristics, specifically evolutionary compu-
tation [2, 4, 5], to take part in the code generation process
in order to efficiently and intelligently expedite code reuse.

This paper presents the SAGE (Software Adaptation Ge-
netically Engineered) project, an approach for facilitating
software composition with evolutionary computation. SAGE
searches for possible combinations of steps necessary to in-
stantiate and perform a successful and efficient composition
strategy given source and target modules. By incorporating
evolutionary computation at the code-level, SAGE is able to
automatically discover possible composition solutions that
may not have been previously considered.

SAGE applies genetic programming (GP) [2, 5] to effi-
ciently search for optimal realizations of composition strate-
gies. GP is an evolutionary algorithm that automatically
generates programs for a defined task and is traditionally
represented by an abstract syntax tree or a stack [7]. In
particular, SAGE generates a tree that specifies the ordered
operations of a specific composition approach. These oper-
ations have been defined based upon composition strategies
as identified by a requirements engineer. Furthermore, fit-
ness criteria drive the search process to create programs that
ensure structural compatibility by analyzing method signa-
tures and pre- and post-conditions.

This extended abstract is structured as follows. Section 2
discusses the SAGE approach in further detail, and Section 3
summarizes our current results and proposes future work.

2. SAGE APPROACH
This section presents current research in the development

of SAGE, a GP approach for automatically composing soft-
ware. SAGE is built upon OpenBEAGLE-Puppy 1, a deriva-
tive of the OpenBEAGLE [3] framework for evolutionary
computation. Puppy is a lightweight and extensible tree-
based framework specifically for GP.

The SAGE genome comprises a set of composition opera-
tors that supersede the standard arithmetic GP operators.
These operators reflect necessary operations in performing
a composition that depend on the target language to be
composed, where we currently target the C programming
language. Table 1 provides a summary of the composition

1Available at: http://code.google.com/p/beagle/wiki/
Puppy

1733

http://code.google.com/p/beagle/wiki/Puppy
http://code.google.com/p/beagle/wiki/Puppy


operators that have been identified thus far as necessary to
perform a composition in C. Each is a high-level representa-
tion of an operation to be performed and may have various
parameters, such as values or code statements.

Table 1: SAGE Composition Operators.
Operator Description

Wrapper Encapsulate composed module
Function pointer Provide reusable invocation interface
Code Injection Directly insert code into source mod-

ule
Transform Transform data into specified format

While the identified operators in Table 1 provide the basis
for the genome in the evolutionary process, it is also nec-
essary to provide fitness criteria to evaluate the generated
composed software. SAGE ensures structural compatibility
through formal analysis of pre- and post-conditions. Given
a source module and a target module to be composed, SAGE
will process the pre- and post-conditions of both and define
the necessary composition steps to ensure the target module
can be safely invoked and that the post-conditions of the
source module are satisfied. Furthermore, SAGE also en-
sures that invocation requirements are satisfied by analysis
of method signatures. A role is assigned for each param-
eter in both source and target modules to guarantee that
corresponding parameters are used to exchange information
between modules.

Consider a program that requires a large amount of records
to be sorted in an efficient manner, for instance, a financial
institution may need to sort daily transactions or a univer-
sity may need to sort student records. In a typical compo-
sition, a software engineer may choose from several existing
sorting algorithms and must ensure that (1) the array to
be sorted is properly delivered to the selected target sorting
module and (2) that the output of the target module returns
a sorted array of numbers to the source module. Analysis of
method signatures and proper definition of parameter roles
satisfies (1), and satisfaction of post-conditions handles (2).

Figure 1 depicts a simplified sample genome using the
composition operators identified in Table 1. This genome
was tasked with composing a bubble sort operation into an
existing program. SAGE explores numerous composition so-
lutions, and eventually the solution with the best fitness
value (1) injects a (2) wrapper at line 144 within the source
module. This wrapper will then directly invoke the bub-

ble_sort method with an integer pointer parameter. Upon
completion of the bubble_sort invocation, a properly sorted
array is then returned to its source module.

3. CONCLUSION
This paper introduced SAGE, a GP-based approach for

automatically composing software at the code-level. SAGE
comprises of a set of composition operators that define the
possible steps that a composition strategy may use, includ-
ing transformation, wrapping, and code injection. These
operators are then incorporated into a GP framework in or-
der to efficiently explore the space of structurally-compatible
compositions. At present, SAGE has been configured specif-
ically for the C programming language.

Code 
Injection

line 144 Wrapper

[invoke] 
bubble_sort

Target module
invocation

Operation
Legend:

(1)

(2)

int* input

Parameter

Figure 1: Sample genome for composing a bubble
sort module.

Our initial explorations into automated software compo-
sition using evolutionary computation have been promising.
As such, we are expanding the genome of SAGE to tackle
increasingly more complex applications as we include be-
havioral, as well as structural, compatibility in determining
genome fitness. Finally, we also plan to extend SAGE to
support other high-level languages, as they may introduce
new composition operations.

4. ACKNOWLEDGMENTS
This work has been supported in part by funding from Air

Force Research Laboratory (AFRL) and Defense Advanced
Research Project Agency (DARPA). Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect
the views of the AFRL, DARPA, or other research sponsors.

5. REFERENCES
[1] S. Apel, C. Kastner, and C. Lengauer. Featurehouse:

Language-independent, automated software
composition. In Software Engineering, 2009. ICSE
2009. IEEE 31st International Conf. on, pages
221–231, Vancouver, BC, Canada, 2009. IEEE.

[2] N. L. Cramer. A representation for the adaptive
generation of simple sequential programs. In
Proceedings of an International Conf. on Genetic
Algorithms and the Applications, pages 183–187,
Pittsburgh, PA, USA, 1985.

[3] C. Gagné and M. Parizeau. Open beagle: A new
versatile c++ framework for evolutionary computation.
In Proceedings of GECCO, New York, NY, USA, 2002.

[4] J. H. Holland. Adaptation in Natural and Artificial
Systems. MIT Press, Cambridge, MA, USA, 1992.

[5] J. R. Koza. Genetic programming as a means for
programming computers by natural selection. Statistics
and Computing, 4(2):87–112, 1994.

[6] K.-K. Lau and T. Rana. A taxonomy of software
composition mechanisms. Proc. 36th EUROMICRO
SEAA, pages 102–110, 2010.

[7] T. Perkis. Stack-based genetic programming. In
Evolutionary Computation, 1994. IEEE World
Congress on Computational Intelligence., Proceedings of
the First IEEE Conf. on, pages 148–153. IEEE, 1994.

1734


	Introduction
	SAGE Approach
	Conclusion
	Acknowledgments
	References



